Exposure of DMBA-treated female rats in a 50-Hz, 50 microTesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation.
نویسندگان
چکیده
There is growing public concern about the possible health risks, particularly increased cancer risks of exposure to magnetic fields (MF) associated with power distribution systems. Recently, we have started a series of animal studies to investigate this issue, using the DMBA (7,12-dimethylbenz[a]anthracene) model of breast cancer in female rats. In the present study, female rats were chronically exposed to a 50-Hz, 50 microTesla (microT) MF with or without DMBA treatment. Because alterations in circulating levels of the pineal hormone melatonin and impaired immune system functions have been involved in breast cancer growth, and both melatonin and immune system are thought to be targets for MF-effects, serum melatonin and the proliferative capacity of splenic lymphocytes were determined in MF-exposed and sham-exposed rats. For this purpose, 216 female Sprague-Dawley rats were divided into four groups. Two of the groups (with 99 animals each) received oral applications of DMBA and were either sham-exposed or exposed in a 50-Hz, 50 microT MF for 24 h/day 7 days/week for a period of 91 days. The other two groups (9 animals each) were either sham-exposed or MF-exposed without DMBA treatment. The exposure chambers and all other environmental factors were identical for MF-exposed and sham-exposed animals. The DMBA-treated animals were palpated once weekly to assess the development of mammary tumors. At the end of the three-month period of MF exposure, the number and size of mammary tumors was determined by autopsy. In controls, DMBA induced tumors in approximately 55% of the animals within the 3 month period of sham-exposure. Already 8 weeks after DMBA application, the MF-exposed group exhibited significantly more tumors than sham-exposed animals. At time of autopsy, significantly more MF-exposed DMBA-treated rats exhibited macroscopically visible mammary tumors than DMBA-treated controls, thus indicating that MF exposure enhances the development and growth of cancers in this model. Comparison of the data from 50 microT with recent data from other flux densities indicated that long-term MF exposure of DMBA-treated rats increases the incidence of palpable and/or macroscopically visible mammary tumors in a highly dose-related fashion. Determination of nocturnal serum melatonin after 9 and 12 weeks of exposure at 50 microT did not yield significant differences between MF-exposed rats and sham-exposed controls, whereas a marked suppression of T cell proliferative capacity was seen in MF exposed rats. The data add further evidence to the hypothesis that hormone-dependent tissues such as breast might be particularly sensitive to MF-effects and indicate that immune system depression is involved in the increased breast cancer growth observed in MF exposed rats.
منابع مشابه
Effects of 50- or 60-hertz, 100 microT magnetic field exposure in the DMBA mammary cancer model in Sprague-Dawley rats: possible explanations for different results from two laboratories.
In line with the possible relationship between electric power and breast cancer risk and the underlying melatonin hypothesis, 50-Hz magnetic field (MF) exposure at microtesla flux densities for either 13 or 27 weeks significantly increased the development and growth of mammary tumors in a series of experiments from Löscher's group in Germany. Löscher's group used the 7,12-dimethylbenz[a]anthrac...
متن کاملMagnetic field exposure increases cell proliferation but does not affect melatonin levels in the mammary gland of female Sprague Dawley rats.
In line with the possible relationship between electric power and breast cancer risk as well as the underlying "melatonin hypothesis," we have shown previously (Thun-Battersby et al., Cancer Res., 59: 3627-3633, 1999) that 50-Hz magnetic fields (MFs) of low (100 microTesla) flux density enhance mammary gland tumor development and growth in the 7,12-dimethylbenz(a)anthracene model of breast canc...
متن کاملSignificant differences in the effects of magnetic field exposure on 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in two substrains of Sprague-Dawley rats.
We have shown previously (S. Thun-Battersby et al., Cancer Res., 59: 3627-3633, 1999) that power-line frequency (50-Hz) magnetic fields (MFs) at micro T-flux densities enhance mammary gland tumor development and growth in the 7,12-dimethylbenz(a)anthracene (DMBA) model of breast cancer in female Sprague-Dawley (SD) rats. We also demonstrated that MF exposure results in an enhanced proliferative...
متن کاملComplex effects of long-term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-Dawley rats depend on duration of exposure.
In previous studies we have demonstrated that 50 Hz, 100 microT magnetic field (MF) exposure of female Sprague-Dawley rats for 13 weeks significantly enhances the development and growth of mammary tumors in a breast cancer model. The present study was designed to test the hypothesis that, at least in part, the tumor (co)promoting effect of MF exposure is due to MF effects on the immune surveill...
متن کاملMelatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat.
The effects of the pineal hormone, melatonin, and of pinealectomy on the incidence of mammary adenocarcinoma in Sprague-Dawley rats treated with 7,12-dimethylbenz(alpha)-anthracene (DMBA) were investigated. Melatonin (2.5 mg/kg), begun on the same day as DMBA (5 mg) treatment and given daily in the afternoon for 90 days, significantly reduced the incidence of mammary tumors from 79% (control) t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 17 5 شماره
صفحات -
تاریخ انتشار 1996